

Implication of Atmospheric Wetness Levels on Corrosion at a Coating Defect during Accelerated Testing

James F. Dante
Southwest Research Institute

ASETS Defense 8/28/2012

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 28 AUG 2012		2. REPORT TYPE		3. DATES COVERED 00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
Implication of Atm	t a Coating 5b. GRANT NUMBER					
Defect during Accelerated Testing				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Southwest Research Institute,6220 Culebra Rd,San Antonio,TX,78238-5166				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES ASETSDefense 2012: Sustainable Surface Engineering for Aerospace and Defense Workshop, August 27-30, 2012, San Diego, CA. Sponsored by SERDP/ESTCP.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 19	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Background

- SERDP program to develop improved accelerated corrosion test
- Many accelerated environmental tests exist
 - Developed by applying reasonable environmental conditions and ensuring resultant corrosion damage of a test system is realistic: may or may not "excite" specific operational failure modes in other systems
- Approach to new accelerated corrosion test
 - Thoughtful consideration of appropriate sample design
 - Make use of scientific understanding of corrosion mechanisms to develop exposure test cycle parameters

Outline

- Objectives
- Atmospheric corrosion
- Testing Approach
- Effect of RH on corrosion of steel
- Effect of inhibitor addition on coated steel
- Summary and future work

Technical Objective

Objective

- Develop an understanding of how RH affect corrosion rate and perturbations in corrosion rate with inhibited coatings
- Why is understanding of RH effect important?
 - SAEJ2334 shows best correlations with field. Performed under wet bottom RH conditions (NOT FOG)
 - Cyclic conditions lead to different corrosion modes
 - SCC observed at salt deliquescence
 - Realistic conditions failure modes must be replicated in appropriate accelerated test methods

Atmospheric Corrosion

- Corrosion processes in the atmosphere are controlled by a thin film electrolyte layer on a metal substrate
- The electrolyte layer composition is controlled by
 - Atmospheric constituents (aerosols and gasses)
 - Relative Humidity (RH) and temperature
 - The presence of inhibitors in or galvanic interactions with coatings

Experimental Approach

- Corrosion (anodic site) and reduction (cathodic site) occur at the same rate
- Electrons flow from anode to cathode
- Multiple isolated anodes or cathodes develop
- Measure current at each electrode gives corrosion rate at the corrosion potential

Experimental Procedure

- 100 electrode (250 micron) multi-electrode probe fabricated using 1018 carbon steel
- ~10mg/cm² of NaCl placed over electrode elements (factor of 10 – 100 greater than outdoors)
- Atmospheric chamber used to control RH and temp
- Exposed under different RH conditions for 2.5 hour followed by reducing RH to 40%

Multi-Electrode Measurements

- chamber assembled to control isohumidity conditions
- Anodic and cathodic regions form on multi-electrode probe

Measurements at Iso-Humidity

- Total anodic current vs. time shows different corrosion rates over time
 - < 70% is likely flash rust (short duration, electrolyte supports rust formation near 60% RH)
 - Anodic current peaks during wetting and drying
- Integration of current vs. time gives charge passed.
 - For NaCl covered surface and RH > 70%, , passed charge is similar to bulk liquid exposure

Measurements in Cyclic Humidity

- How does wetting and drying affect corrosion processes?
- Tests performed in an AutoTechnology accelerated corrosion test chamber
- RH cycled between high and low values. Temp = 30°C

Parallel plate wetness probe

MMA and RH probes

Measurements in Cyclic Humidity

- Anodic current flows when RH is well below 40% and even as low as 15% during drying (efflorescence)
- Peaks in total anodic current are observed during wetting and drying
 - 60% 65% = Thin film electrolyte behavior where initial high corrosion rate from oxygen availability followed by protective layer formation and decreasing corrosion rate
 - Above DRH = bulk electrolyte behavior + dissolved NaCl creating non-protective rust layer

Volume of Adsorbed Water

- Work by Dante and Kelly (1993) calculated adsorbed water onto Au
- Assuming Au and steel adsorption is similar and 30nl/cm²/monolayer of water, can calculate volume of adsorbed moisture with salt
- OLI calculations used to calculate volume of water with NaCl deliquescence
- Corrosion of Steel can occur at 60% RH, would expect some protection since NaCl is not dissolved
- Above DRH, bulk water accumulation so would expect non-protective oxide

Hypothesis – Protection at a Scribe

- Ability to protect substrate at a coating defect depends on connectivity between defect and mode of inhibition
- Moisture can promote inhibitor migration in the coating. For a given test method, wet and dry times will influence inhibitor mobility, and thus corrosion rate

Hypothesis – Protection at a Scribe

- For coated systems, what is the controlling process in corrosion failure at a scribe?
 - Corrosion rate of the substrate as a function of RH
 - Inhibitor mobility (or galvanic connectivity) (red dots are theoretical)

Simulation of Painted Surfaces

- Electrode surface painted leaving 20 electrodes (i.e. 2 rows) uncovered
- ½" o-ring placed over electrodes and salt deposited

Effect of Inhibitor Leaching

- Inhibitors effect only below DRH
- Inhibitors suppresses the 60% RH peak for steel

Effect of Inhibitor Leaching

- Electrochemical potentiodynamic scans performed in NaCl + 0.001
 M NaCl dichromate
- As NaCl decreases, cathodic current density increases
- Therefore, RH increases (NaCl decreases), total charge passed increases

Summary and Implications for Accelerated Testing

- Original hypothesis of chromate mobility decreasing with decreasing RH is not supported by the data
 - Component corrosion in cyclic environments controlled by galvanic interactions?
 - Need to determine what RH range results in decoupling of steel and aluminum
- Inhibitors protect against corrosion at 60% 65%
 RH (flash rust) on steel
 - Short lived event that is likely inconsequential

Continuing Work

- Ongoing testing to define drying time as a function of
 - Time when RH > DRH
 - Drying time at differing RH values < DRH
- Testing using Aluminum electrodes